Stent versus stentless pyeloplasty in congenital pelvic ureteric junction obstruction kidney in children

Dr. Punit Srivastava, Dr. Richa Jaiman and Dr. Deepak Kumar

DOI: https://doi.org/10.33545/surgery.2022.v6.i2b.891

Abstract

Objective: The aim of this study was to compare between stenting and stentless dismembered pyeloplasty as regards outcome, early and late postoperative results, and complications.

Background: Ureteropelvic junction obstruction is a common congenital urologic anomaly. Open pyeloplasty is the standard surgical treatment. Drainage following pyeloplasty using a double J stent prevents subsequent stenosis and urine leakage.

Patients and Methods: This study was conducted on 50 pediatric patients (maximum age 16 years) with a primary diagnosis of ureteropelvic junction obstruction who were divided into two groups: Group 1, the stented group double J (25 cases). Group 2, the nonstented group (25 cases). Classic Anderson–Hynes pyeloplasty was performed for the two groups.

Results: A total of 50 patients were included in the study. 27 (54%) cases were male and 23 (46%) cases were female. Their ages ranged from 6 months to 15 years. The mean ± SD age was 6.75 ± 4.53 years. All cases were unilateral; 25 (50%) cases were right sided and 25 (50%) cases were left sided. Postoperative complications included the following: urinary tract infection in only one case in group 1, residual mild hydronephrosis in only one case in group 1 and three (30%) cases in group 2; clot formation in only one case in group 2, and urinoma in only one case in group 2.

Conclusion: Pyeloplasty with a diverting stent is technically feasible and safe. Only risks for multiple anesthesias and economic burden with stent removal are present. The specific indication when stented pyeloplasty needs to be performed is in redo pyeloplasty, solitary kidney, inflamed renal pelvis, and hugely distended renal pelvis.

Keywords: Postoperative results, stented pyeloplasty, ureteropelvic junction obstruction

Introduction

Pelviureteric junction obstruction (PUJO) or Ureteropelvic junction obstruction (UPJO) is the commonest cause of hydronephrosis in children. Once obstruction has been diagnosed the surgeon's main priority is to decide whether the child requires an operation. There are many controversies with respect to approach, degree of invasiveness and timing of surgery. The objective however is the same in all approaches: to preserve renal function in the least morbid manner with the best possible outcome. Anderson-Hynes dismembered pyeloplasty has been used for more than 50 years and it remains the surgical treatment of choice for paediatric PUJO. Although there have been many modification the basic operative technique for dismembered pyeloplasty is universal, involving excision of the pelviureteric junction and redundant pelvis when necessary, and re-anastomosis of the healthy ureter to the renal pelvis [1].

The postoperative follow up of patients involves ultrasound and diuretic renal scan. This yields structural and functional assessment of the operated kidney. However since the success rates of pyeloplasty are as high as 97% it seems unnecessary to expose 100 children to ionizing radiation to find the 2 or 3 who might have postoperative obstruction. Postoperative follow up with ultrasound is being explored as a viable alternative with diuretic renal scan reserved for doubtful cases [2].

Aims and objectives

Aim

The Aim of this study is to study the stent versus stentless pyeloplasty in congenital pelviureteric junction obstruction.
Objectives
1. To see the effectiveness of stented pyeloplasty in congenital pelviureteric junction obstruction.
2. To see the effectiveness of stentless pyeloplasty in congenital pelviureteric junction obstruction.
3. To compare the effectiveness of two modalities in terms of:
 - operative time
 - hospital stay
 - postoperative complications
 - postoperative effect on hydronephrosis
 - postoperative differential renal function (DRF).

Review of literature
Incidence
Pelviureteric junction (PUJ) obstruction is a chronic partial or intermittent obstruction due to an intrinsic defect in motility across the PUJ or extrinsic compression which impedes the passage of urine from the renal pelvis to the ureter. PUJ obstruction (PUJO) is the commonest cause of foetal hydronephrosis with a reported incidence of about 1:750 to 1:1000 live births. PUJO is usually unilateral affecting the left side twice as commonly but may be bilateral in 10 to 15% of cases. In newborns, the male to female ratio is 2:1.

Etiopathogenesis
The causative factor for PUJO may be intrinsic, intramural or extrinsic

Intrinsic
Aperistaltic segment.

An aperistaltic segment at the PUJ impedes the flow of urine across it Figure 1(a). It is characterised by a poorly distensible segment of variable length which may be probe patent. The etiology remains unclear. Various factors like incomplete recanalisation of the ureter during development, abnormal innervation and disordered architecture of the muscle with abnormal collagen deposition have been hypothesized.

High insertion of the pelviureteric junction
The PUJ is inserted high on the pelvis and distension of the pelvis causes obstruction of the nondependent ureter.

Intra mural
Ureteric folds
The PUJ is normal and patent but the proximal ureter is tortuous and kinked. Figure 1(b). Straightening of these folds with growth may explain the resolution of PUJO observed in some antenatally detected cases.

Ureteric polyps
These rare fibro epithelial polyps are usually seen in the mid ureter.

Extrinsic
Aberrant lower pole vessel
Crossing lower pole vessels causing kinking of the ureter account for about 30% of obstruction in older children. Figure 1(c).

Other causes of PUJO
Retrocaval ureter
This is due to the abnormal development of the posterior cardinal veins within which the ureter is trapped and obstructed.

Horseshoe kidney
This is the most common complication of horse shoe kidney and may be due to compression of the ureter by an aberrant vessel or distortion as it passes over the distended isthmus Figure 1.d.
Vesicoureteric reflux
Major grades of reflux cause tortuosity and kinking of the ureter leading to secondary PUJO.

Fig 1 (e): MCU showing major reflux causing kinking at the PUJ

Presentation
With advances in foetal ultrasound screening and its widespread usage, antenatal detection has become the commonest mode of presentation. In children who have not been identified by foetal ultrasound, flank pain is a common presenting complaint. Older children with a crossing vessel might present with intermittent pain with a palpable mass which is relieved with diuresis called Dietels crisis. It is not uncommon for a child with PUJO to present with a urinary tract infection which, in some instances may progress to pyonephrosis. A grossly hydronephrotic kidney may present with a palpable mass. Trivial trauma may cause hematuria. Occasionally the PUJO may be detected incidentally while evaluating the child for some unrelated symptom. Newborns with a massive hydronephrosis can rarely present with a urinoma at birth.

Diagnostic Evaluation
The wide spread use of antenatal ultrasound has helped identify many infants with hydronephrosis; all of whom may not have a functional obstruction requiring surgical intervention. The diagnostic armamentarium available needs to be used judiciously to establish the cause of hydronephrosis and determine the degree of obstruction.

Antenatal ultrasound
The routine use of prenatal ultrasound has lead to the early detection of hydronephrosis. This has shifted the patient profile from symptomatic older children to largely asymptomatic newborns. A few concerns have emerged from the widespread use of prenatal ultrasound. Firstly, the lack of consensus regarding the definition of hydronephrosis. Secondly, the correct evaluation and management of asymptomatic hydronephrosis \[3\].

The Society for Foetal Urology (SFU) classification of foetal hydronephrosis (table 3.1) provides a guide to the prognosis and need for postnatal evaluation. Grades I and II will require a postnatal ultrasound to reassess the kidney and a MCU to rule out reflux. The higher grades require functional evaluation and will most likely require corrective surgery.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Central renal complex (pelvis and calices)</th>
<th>Renal parenchyma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Slight splitting</td>
<td>Normal</td>
</tr>
<tr>
<td>II</td>
<td>Evident splitting; confined within renal border</td>
<td>Normal</td>
</tr>
<tr>
<td>III</td>
<td>Wide splitting; pelvis dilated outside renal border; calices dilated</td>
<td>Normal</td>
</tr>
<tr>
<td>IV</td>
<td>Wide splitting with pelvis dilated outside renal border; calices dilated and may appear convex</td>
<td>Atrophy</td>
</tr>
</tbody>
</table>

Bouzada et al. took into consideration the anteroposterior diameter (APD) after 28 weeks of gestation. They found that an APD ≥ 15mm has sensitivity of 82.4% and specificity of 87.9% to identify renal units that will require medical or surgical treatment \[4\].

Addressing the second issue of asymptomatic hydronephrosis, a meta analysis done by Lee et al. highlights the dilemma regarding the treatment of mild and moderate hydronephrosis which have a risk of pathology of 11.2% and 43.5% respectively(5). The global consensus is toward conservative management in asymptomatic infants less than 6 months of age \[3\]. Yi Yang et al. in their long term follow up of antenatal hydronephrosis found that SFU grades I and II did not require surgical intervention. Greater improvement occurred in children with differential renal function less than 40% but it did not recover to predeterioration levels postoperatively. They recommended earlier intervention following a short period of strict surveillance for preservation of renal function \[6\]. Postnatal ultrasound has become a cornerstone in the evaluation of children with antenatal hydronephrosis. The recommended timing of the postnatal scan is between 4 to 7 days of life \[7\].

Ultrasound
Ultrasound is inexpensive and non-invasive, does not expose the child to ionizing radiation and is not limited by renal failure. This makes it an excellent tool for screening and follow-up. The size of the kidney, the cortical thickness and the anteroposterior diameter indicating the degree of dilatation can be measured and compared with age appropriate normograms. It is however operator dependent, cannot diagnose obstruction and does not give any functional information. The quality of the scan can be limited by body habitus, excess bowel gas and lack of patient cooperation.
Diuretic Renal scintigraphy (DRS)
Once the diagnosis of hydronephrosis is made, the next step is to establish function of the renal unit and the degree and level of obstruction. DRS is commonly used in the diagnosis and follow up of children with PUJO and for postoperative evaluation following pyeloplasty.

The radiopharmaceuticals used in DRS comprise a radionuclide (Technetium 99m), bound to a carrier macrolide. Technetium 99m-diethylenetriaminepentaacetic acid (99mTc-DTPA) and technetium 99m-mercaptoacetyltriglycine(99mTc-MAG-3) are currently the preferred radionuclides used in suspected PUJO. They are both preferentially concentrated by the kidney and freely filtered by the glomerulus. DTPA is neither secreted nor reabsorbed by the renal tubules, whereas MAG-3 is secreted by the tubules(8). Technetium-99m-L,L-ethylenedicysteine (99mTc-EC) is a relatively new agent and is now being widely used for DRS(9, 10).

Dynamic renal scintigraphy allows estimation of three parameters of renal function: blood flow to the kidney, renal clearance \(^{[11]}\) and excretion from the kidney (obstruction). Figure 3 shows a normal renogram from one renal unit. The initial steep upstroke represents radioactivity in the aorta and abdominal vasculature and lasts of 30 to 60 seconds. The second part of the rise reflects renal uptake i.e. function and takes 2 to 4 minutes to reach its peak. The subsequent downslope is the excretory phase \(^{[12]}\). The clearance half time of a normal renal unit after furosemide administration is less than 10 minutes. A delay of 20 minutes or more is associated with significant obstruction. Values between 10 and 20 minutes are considered intermediate. Clearance half time in isolation however cannot be used to diagnose obstruction. Other factors like differential renal
function (DRF) and curve analysis along with ultrasound findings and clinical data determine the presence of obstruction especially postoperatively [13]. Nam et al. used a modified DRF measurement calculated according to cross-sectional area which they claim had fewer false negative results [14]. This could be particularly useful in equivocal circumstances.

In the present clinical context DRF largely determines the intervention. A DRF of more than 35% would warrant conservative treatment if the degree of hydronephrosis is within acceptable limits. Any function less than 35% on the initial scan or a decrease in function of 10% on follow up scans would be considered for pyeloplasty.

DRS needs to be interpreted with caution in poor or immature renal units and in massively dilated pelvises. Other factors like the region of interest, time of measurement, state of hydration, bladder fullness, reservoir effect, type of protocol and renal response to furosemide can influence the results of differential function [15].

The concept of supranormal function, i.e. DRF more than 55% in the obstructed kidney, has been much debated. There is no consensus regarding the significance or causes of this phenomenon. Ham et al. rule out the theory that supranormal DRF is due to an increased nephron volume [16]. Oh et al. [17] and Capolicchio et al. [18] believe that supranormal function is an adverse prognostic factor.

Micturating cystouretherogram (MCU)

MCU was routinely used in the investigation of antenatally detected hydronephrosis. An MCU is an invasive unpleasant experience for most children and some authors have challenged its routine usage [19]. It is reserved for children with bilateral hydronephrosis or a dilated ureter on ultrasound and those with a history of febrile UTI and hydronephrosis.

Fig 4: MCU showing bilateral major reflux with PUJO

Magnetic Resonance Urography (MRU)

MRU is the most recent addition to the armamentarium of investigations for renal anomalies. It offers excellent anatomic resolution and soft tissue contrast without using ionizing radiation. The use of Gadolinium has enhanced the MRU further by providing it functional capabilities comparable to DTPA [20]. The drawback lies in the need for sedation or anaesthesia in children and the cost and availability. Also spatial reconstruction and interpretation is a cumbersome process.

Intravenous pyelography (IVP) and Whitaker test

Intravenous pyelography and Whitaker test are mentioned only for completion. IVP is helpful in delineating anatomy clearly but is inaccurate if function is poor, requires use of nephrotoxic contrast and involves radiation exposure.

Whitaker test is the only study that measures directly the pressure in the renal pelvis/bladder. It is however invasive, not reproducible, gives no functional information and involves radiation exposure.

Retrograde pyelogram (RGP)

An RGP is not essential in the diagnostic work up of PUJO. It however precisely identifies the location of obstruction and rotation of kidney and excludes the presence of distal obstruction.

Biochemical markers

The use of transforming growth factor b1(TGF-b1), monocyte chemotactic protein 1 (MCP-1), and endothelin-1 is under review.
Investigation algorithm for antenatal hydronephrosis

![Algorithm proposed by Bouzada et al.](http://www.surgsci.com)

Management
In the past, children with PUJO presented with symptoms. It was thus logical to operate to relieve those symptoms. The indications for pyeloplasty in asymptomatic children with prenatally detected PUJO remain controversial. The end point of all approaches remains the preservation of renal function. Discussed below are the various approaches, controversies and guidelines.

Observation or early surgery?
There are two opinions regarding the initial management of PUJO – watchful waiting or early surgery. There is now a global consensus toward initial observation instead of surgery in the newborn period and infancy [3]. Strict surveillance is required when a child is being treated conservatively and caregivers must understand the need for close follow up [5].

The proponents of early surgery believe that renal function does not recover after pyeloplasty to the predeterioration status. It is thus not necessary to wait for deterioration. Rather it is better to operate early and preserve maximum function in the obstructed kidney [21].

When to operate?
The indications for pyeloplasty can be briefly summarised as:

- Symptomatic PUJ obstruction, e.g. pain, infection, palpable renal mass.
- Asymptomatic obstruction with reduced function (less than 35–40%) at the time of initial evaluation, particularly if the AP diameter of the renal pelvis exceeds 30 mm
- Failure of conservative management, i.e. deteriorating function of more than 10% or increasing dilatation.
- Persisting asymptomatic obstruction with increasing dilatation with stable differential function [22].

Which operation to perform?
There several surgical options and although the Anderson Hynes pyeloplasty is the most popular operation a knowledge of the other techniques is useful.

Pyelopectomies are broadly divided into dismembered and non dismembered.

Dismembered pyeloplasty
The dismembered pyeloplasty described by Anderson Hynes involves the excision of the adynamic segment of the PUJ and reanastamosis to the pelvis with or without pelvic reduction.

![Anderson Hynes pyeloplasty](http://www.surgsci.com)
Non dismembered pyeloplasty
The non-dismembered pyeloplasties used different flaps of the dilated pelvic tissue to widen the narrow PUJ.

Fig 6b: Foley Y-V plasty
The Foley Y-V plasty makes a Y incision from the ureter to the pelvis and converts it to a V. It is useful in cases of high insertion of the ureter.

Fig 6c: Culp De Weerd spiral flap pyeloplasty
The Culp–DeWeerd spiral flap pyeloplasty uses a spiral flap which is used to bridge the gap in the ureter and is especially useful in long segment strictures [23].

Fig 6d: Scardino and Prince vertical flap
Scardino and Prince use a vertical flap (Fig d). This is useful in a dependent PUJ with a large square extra renal pelvis [24].

Tissue handling and Suture material used?
The judicious use of traction sutures allows for minimal handling of the pelvis and ureter. Handling leads to more postoperative oedema. Stentless operations especially require minimal handling of the tissues.
An avascular plane is usually located outside the intrinsic blood supply of the pelvis. Recurrent preoperative infection or urinary leak causes fibrosis and mobilization of the pelvis is more difficult.
The use of absorbable monofilament sutures is preferred. The use of finer suture materials like 5-0 to 7-0 has made possible a water tight anastamosis. Suturing is started at the apex and attention must be paid to maintaining a patent lumen. Continues or interrupted sutures may be used.

Stented versus non stented pyeloplasty
The proponents of stented pyeloplasty believe that it provides complete urinary diversion and decreases the risk of urinary leak. It also maintains ureteral calibre and anastomotic alignment. Others argue that an external stent increases the length of hospital stay and stents cause more urinary infection.
Evidence suggests that stented and non stented repairs are equally successful [25].
There are two types of stents that can be used in pyeloplasty – internal stent eg, Double J stent or an external stent eg,
transanastomotic nephrostomy/pyelostomy stent. External stent usages has its putative complications which include stent blockage, dislodgement, bleeding and persistent urinary leak from the flank \cite{25}. The internal stent on the other hand may get blocked and more importantly when introduced antegradely may coil at the ureterovesival junction causing problems at removal. Chandrasekharam found that placing the stent by retrograde cystoscopy resulted in less malposition \cite{26}.

Minimally invasive versus open pyeloplasty

In the paediatric population open pyeloplasty is the gold standard for PUJO repair with success rates up to 99\% \cite{27}. Minimally invasive techniques like retrograde ureteroscopic endopyelotomy with the holmium:YAG laser \cite{28} or ureteral cutting balloon catheter \cite{29} have been tried but the failure and complication rates are unacceptably high. Laparoscopic pyeloplasty provides the first viable minimally invasive alternative to repair PUJO \cite{30}. However few studies have compared the results of laparoscopic versus open pyeloplasty and the numbers are small. Barga et al. compared three groups: laparoscopic pyeloplasty and open pyeloplasty done though a flank and dorsal lumbotomy incision. They found that laparoscopic pyeloplasty took significantly longer. This however may not hold true once more experience is gained in laparoscopy. Laparoscopic pyeloplasty is associated with decreased narcotic use and less pain compared to open procedures, thus contributing to a faster convalescence and earlier hospital discharge. They also found that the hospital stay was shorter for laparoscopic surgery than open. This shorter hospital stay could simply reflect a growing trend toward earlier discharge, which is effectively more pronounced for the more recently introduced method \cite{31}. Piaggio et al. found that there is a higher rate of urinary leak in laparoscopic pyeloplasty \cite{32}. This is attributed to the difference in tissue handling and the suture materials used. A meta analysis conducted by Seixas- Mikelus et al. revealed that the complication rates of laparoscopic pyeloplasty were double that of open pyeloplasty \cite{33}. Laparoscopy is a good option for older children but in infants open pyeloplasty is still the safe alternative.

The open pyeloplasty has evolved over time from using a large muscle cutting incision to using a muscle splitting incision less than 2.5 cm. This is comparable to the combined laparoscopy incision and narcotic requirement is minimal \cite{34}. Patient age, body habitus and surgeon experience are factors that may have a role in selecting patients who could potentially benefit from one technique over others.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Laparoscopic pyeloplasty</th>
<th>Open pyeloplasty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmesis</td>
<td>Good</td>
<td>Comparable</td>
</tr>
<tr>
<td>Hospital stay</td>
<td>Shorter</td>
<td>Changing trend toward shorter</td>
</tr>
<tr>
<td>Narcotic usage</td>
<td>Less</td>
<td>More</td>
</tr>
<tr>
<td>Operating time</td>
<td>Longer</td>
<td>Shorter</td>
</tr>
<tr>
<td>Learning curve</td>
<td>Longer</td>
<td>Insignificant</td>
</tr>
<tr>
<td>Tissue handling</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>Complications</td>
<td>More</td>
<td>Less</td>
</tr>
<tr>
<td>Optimal for</td>
<td>Older children, redo pyeloplasty</td>
<td>Infants</td>
</tr>
</tbody>
</table>

Postoperative Follow Up

Open dismembered pyeloplasty in children has reported success rates of up to 99\% \cite{25}. Therefore the postoperative follow up of children after pyeloplasty, especially when the test involves exposure to ionizing radiation, has raised concerns.

What test to use?

The DRS is at present the most widely used tool to determine the outcome of pyeloplasty. The parameters of interest postoperatively are relief of obstruction and improvement in SRF. DRS is an invasive procedure and requires the use of ionizing radiation. Almodhen et al. examined the use of ultrasound in the postoperative follow up and found that patients who show a downgrading of hydronephrosis in the postoperative scan might not require a DRS to rule out obstruction \cite{34}. Cost et al. elegantly concluded form their experience that post pyeloplasty imaging should aim to identify those who require further intervention. They demonstrated that at-risk patients could be identified by a screening ultrasound and only selective patients needed to be subjected to a DRS. This will improve compliance and decrease cost and radiation exposure \cite{2}. Chipde et al. went further to say that pelvic anteroposterior diameter, pelvic cortical ratio and pelvic urine protein-to-creatinine ratio are the most useful parameters to predict improvement in renal function after pyeloplasty \cite{35}.

How long is long enough?

Barga et al. in their study compared retrograde endopyelotomy to redo pyeloplasty for failed pyeloplasty. They observed that recurrent obstruction can occur in the immediate postoperative period, soon after indwelling stent removal or several years later, raising questions about the timing, frequency and duration of follow up after pyeloplasty in children \cite{35}. Poosy et al. in their long term follow up of pyeloplasty found that renal units that show an unobstructive curve one year post pyeloplasty never had problems on later DRS. These findings were corroborated by Pohl et al. who stated that no follow up was required if the renogram done three months post operatively showed a unobstructed flow. However, renal units with half-times greater than 20 minutes and no functional loss may require longer follow up. Any obstructed system showing functional deterioration would require immediate intervention \cite{36}. Venkatesh K. L. (2017) \cite{37} observed that pelviureteric junction obstruction commonly present with antenatal hydronephrosis. The aim was to report and analyze the clinical spectrum of infantile pelviureteric junction obstruction. Retrospective descriptive study of infants operated for pelviureteric junction obstruction (PUJO) during 2013-2016. Clinical presentations, management and follow up were analyzed. They observed that there were 44 infants involving 48 PUJO renal units of who were nine girls. The sex distribution was 1:3.8. Mean age of the presentation was three months. PUJO was bilateral in four patients. Two patients had unilateral PUJO of lower moiety of duplex system. Median of anteroposterior diameter (APD) and differential function of kidney on EC was 2.5cms and 28\% respectively. Three patients had poorly functioning kidneys (PFK) (<10\%). They concluded that good antenatal counselling and appropriate postnatal evaluation detects PUJO early. Early
infantile pyeloplasty is safe and effective. Routine micturating cystourethrography is debatable in pelviureteric junction obstruction.

Akram M. et al. (2018) [38] revealed that the short-term results of stented versus nonstented open Anderson–Hynes dismembered pyeloplasty regarding operative time, hospital stay, functional outcome, and complications. Twenty-seven pediatric open Anderson–Hynes dismembered pyeloplasties were performed for primary pelviureteric junction obstruction (PUJO) by a single team at a single institution from November 2009 to October 2012. Preoperative investigations included renal function tests, urine microscopy, culture, and sensitivity, renal ultrasonography, and diethylenetriamine pentaacetic acid (DTPA). Patients were simply randomized into two groups: group I, the stented group (either nephrostent or JJ stent), and group II, the nonstented group. Outcome was analyzed with respect to operative time, hospital stay, postoperative complications, postoperative effect on hydronephrosis, and postoperative differential renal function (DRF). Minimal follow-up was 6 months. They observed that this study included 27 pediatric patients with primary PUJO, 14 patients in group I and 13 patients in group II. The mean age was 5.7±2.6 years. Twelve (44.4%) cases were right sided and 15 (45.6%) were left sided; no bilateral cases were present. The mean DRF preoperatively was good in both groups (37.5% for group I vs. 35.6% in group II). There was no significant difference in operative time between both groups. The hospital stay was significantly shorter in the stented group, but this was mainly related to postoperative care policy in both groups. There was no significant difference between both groups regarding the complication rate. Postoperative DRF as well as hydronephrosis were significantly improved in both groups, but there was no statistically significant difference between both groups. They concluded that the use of stents in pyeloplasty is not justified as a routine. The overall success and complication rates are independent of whether or not to drain or of the method of drainage. Therefore, it seems that the choice depends on local circumstances and surgeon preference. A larger number of patients is needed to validate these results.

Materials and methods
This study was conducted in patients coming to the surgical ward through surgical outpatient department of S N M C, Agra from December 2016 to June 2018.

Type of study
Prospective randomized controlled study

Selection of cases
A total of 50 patients with Congenital PUJ obstruction coming to department of surgery S N M C Agra was included in the study.

Methods
Patients were divided into two groups-
1. Congenital PUJ Obstruction treated with Stent Pyeloplasty,
2. Congenital PUJ Obstruction treated with Stentless Pyeloplasty.

Inclusion criteria
- Age <16 yrs,
- Patients with DRF >20%,
- Patients with bilateral functional kidneys
- Patients without associated renal calculus

Exclusion criteria
- Age >16 yrs,
- Single kidney patients,
- Secondary or recurrent PUJ obstruction,
- Patient with DRF <20%,
- Patient with associated renal calculus,
- Patients with chronic debilitating disease

Follow-up
Patients will be followed up for the period of 6 months in terms of-
- postoperative complications
- postoperative effect on hydronephrosis
- postoperative differential renal function (DRF)

Observations
This study was conducted in patients coming to the surgical ward through surgical outpatient department of S N M C, Agra from December 2016 to June 2018.

<table>
<thead>
<tr>
<th>Age</th>
<th>Stented Group (n=25)</th>
<th>Non-stented group (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>4-12 months</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>1-5 yrs</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>6-10 yrs</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>11-16 yrs</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>4.13±3.58</td>
<td>4.20±3.99</td>
</tr>
</tbody>
</table>

The above table shows that among the 50 patients who underwent pyeloplasty, were divided into two groups. Each group contain 25 patients.

Age of patients range from 4 month to 16 years. The mean age of 4.13 in Stented group and 4.20 years in Non-stented group.
There were more male children 15 (27%) then female children 10 (18%) in stented group and more female children 13 (23%) then male children 12 (21%). Total male children 27 (54%) out of 50 patients. Total female children 23 (46%) out of 50. Male to female ratio 1:17.

Table 4: Distribution of cases according to sex

<table>
<thead>
<tr>
<th></th>
<th>Stented Group (n=25)</th>
<th>Non-stented group (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Male</td>
<td>15</td>
<td>27%</td>
</tr>
<tr>
<td>Female</td>
<td>10</td>
<td>18%</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>18.33±1.57</td>
<td>19±1.72</td>
</tr>
</tbody>
</table>
Table 5: Distribution of cases according to etiology

<table>
<thead>
<tr>
<th></th>
<th>Stented Group(n=25)</th>
<th>Non-stented group(n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Intrinsic factor</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Extrinsic factor</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Polyp</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>mean±sd</td>
<td>10±1.46</td>
<td></td>
</tr>
</tbody>
</table>

Out of two groups, in stented group patients 15 (60%) children having intrinsic factor, 8 (32%) having extrinsic factor and 2 (8%) having polyp responsible for pelviureteric junction obstruction. In second group non stented group 17 (68%) children having intrinsic factor, 6 (24%) having extrinsic factor and 2 (8%) having polyp responsible for pelviureteric junction obstruction. There was no significant different between in distribution of patients in two study groups with respect to etiology.

Out of two groups, in stented group 4 (16%) children presented with UTI, 10 (40%) children presented with pain in abdomen, 7 (24%) children presented with blood in urine, out of 25 children of group 1, 5 children were diagnosed as prenatal sonography. In non-stented group 6 (24%) children presented with UTI, 10 (40%) children presented with pain in abdomen, 5 (20%) children presented with blood in urine, out of 25 children of group 2, 4 children were diagnosed as prenatal sonography.

Table 6: Symptoms in both group

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Stented Group(n=25)</th>
<th>Non-stented group(n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>UTI</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Pain</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Hematurit</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Prenatal sonography</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>mean±sd</td>
<td>6.25±0.91</td>
<td></td>
</tr>
</tbody>
</table>

Out of two groups, in stented group 4 (16%) children presented with UTI, 10 (40%) children presented with pain in abdomen, 7 (24%) children presented with blood in urine, out of 25 children of group 1, 5 children were diagnosed as prenatal sonography. In non-stented group 6 (24%) children presented with UTI, 10 (40%) children presented with pain in abdomen, 5 (20%) children presented with blood in urine, out of 25 children of group 2, 4 children were diagnosed as prenatal sonography.
Table 7: Post-operative changes of ultrasonography detected hydronephrosis in stented group

<table>
<thead>
<tr>
<th>Degree of HN</th>
<th>Pre-op usg detected hydronephrosis (n=25)</th>
<th>Postoperative usg detected hydronephrosis (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Severe</td>
</tr>
<tr>
<td>Severe HN</td>
<td>No</td>
<td>%</td>
</tr>
<tr>
<td>Moderate HN</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Mild HG</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Mean±Sd</td>
<td>8.33±0.99</td>
<td>4.67±0.58</td>
</tr>
</tbody>
</table>

In stented group out of 25 patients, 12 patients on preoperative USG were diagnosed as a case of severe hydronephrosis after post operatively, 8 patients were normal, 1 patients having moderate hydronephrosis, 2 patients having mild hydronephrosis and only 1 patient having severe hydronephrosis or postoperative ultrasonography findings.

Out of 25 patients 8 patients were diagnosed as moderate hydronephrosis on preoperative ultrasonography after stented pyeloplasty 5 patient were normal, 2 patients having moderate hydronephrosis, only 1 patient having mild hydronephrosis on postoperative ultrasonographic.

Out of 25 patients, 5 patients were diagnosed as case of mild hydronephrosis on preoperative ultrasonography, after stented pyeloplasty 3 patients were normal 1 patient having mild hydronephrosis and 1 patient having moderate hydronephrosis on postoperative ultrasonography.

Fig 11: Post-operative changes of ultrasonography detected hydronephrosis in stented group

Table 8: Post-operative changes of ultrasonography detected hydronephrosis in non-stented group

<table>
<thead>
<tr>
<th>Degree of HN</th>
<th>Pre-op usg detected hydronephrosis (n=25)</th>
<th>Postoperative usg detected hydronephrosis (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Severe</td>
</tr>
<tr>
<td>Severe HN</td>
<td>No</td>
<td>%</td>
</tr>
<tr>
<td>Moderate HN</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Mild HG</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Mean±Sd</td>
<td>8.33±0.59</td>
<td>4.33±0.23</td>
</tr>
</tbody>
</table>

In non-stented group out of 25 patients, 10 patients were diagnosed a s a case of severe hydronephrosis on preoperative ultrasonography after non stented pyeloplasty, out of 10 patients, 5 patients were normal, only 1 patient having severe hydronephrosis, 1 patient having moderate hydronephrosis and 3 patients having mild hydronephrosis on postoperative ultrasonography findings. Out of 25 patients 9 patients were diagnosed as case of moderate hydronephrosis on preoperative ultrasonography findings, after nonstented pyeloectomy out of 9 patients 4 patient were normal, 3 patients having mild hydronephrosis, and 2 patients having moderate hydronephrosis on postoperative ultrasonographic.

Out of 25 patients, 6 patients were diagnosed as case of mild hydronephrosis on preoperative ultrasonography, out of 6 patients after non-stented pyeloplasty 4 patients were normal and rest 2 patients having mild hydronephrosis on postoperative ultrasonography.
Fig 12: Post-operative changes of ultrasonography detected hydronephrosis in non-stented group

Table 9: Complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>Stented Group (n=25)</th>
<th>Non-stented group (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Prolonged Drainage</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Urinoma</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Fever</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Frequency and dysuria</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Flank pain</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Hematuria</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>UTI</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>mean±sd</td>
<td>1.57±0.58</td>
<td>2.43±0.83</td>
</tr>
</tbody>
</table>

In above table in first group out of 25 patients only 11 patients having post operative complications in the form of prolonged drainage, urinoma and fever. In second group of 25 patients only 17 having postoperative complications in the form of frequency, dysuria, hematuria, UTI and pain.

Fig 13: Complications

Table 10: Comparison of recurrence of complications according to the ureteral stent in pyeloplasty

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>Stented Group (n=25)</th>
<th>Non-stented group (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Present</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Absent</td>
<td>21</td>
<td>84</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>mean±sd</td>
<td>12.5±2.40</td>
<td>12.5±1.84</td>
</tr>
</tbody>
</table>
Fig 14: Comparison of recurrence of complications according to the ureteral stent in pyeloplasty

Table 11: Comparison of Hun between the stented and non-stented group

<table>
<thead>
<tr>
<th>SFU grading of hydronephrosis</th>
<th>Stented Group (n=25)</th>
<th>Non-stented group (n=25)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative</td>
<td>3</td>
<td>2.92</td>
<td>0.521</td>
</tr>
<tr>
<td>Post-operative (after 1 year)</td>
<td>1.94</td>
<td>1.91</td>
<td>0.149</td>
</tr>
</tbody>
</table>

Fig 15: Comparison of Hun between the stented and non-stented group

Table 12: Comparison of hun between the stented and non-stented group

<table>
<thead>
<tr>
<th>Anteroposterior pelvic diameter</th>
<th>Stented Group (n=25)</th>
<th>Non-stented group (n=25)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative</td>
<td>35.4</td>
<td>30.1</td>
<td>0.501</td>
</tr>
<tr>
<td>Post-operative (after 6 months)</td>
<td>14.5</td>
<td>14</td>
<td>0.372</td>
</tr>
</tbody>
</table>
Fig 16: Comparison of hnu between the stented and non-stented group

Table 13: Hospital stay (days)

<table>
<thead>
<tr>
<th></th>
<th>Stented group</th>
<th>Non-stented group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital stays</td>
<td>2.6</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 14: Neonatal hydronephrosis is defined as SFU grade ≥ 1 or renal APD ≥ 7 mm

<table>
<thead>
<tr>
<th></th>
<th>SFU</th>
<th>Pattern of renal sinus splitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Grade-0</td>
<td>No splitting</td>
</tr>
<tr>
<td></td>
<td>Grade-1</td>
<td>Slight splitting</td>
</tr>
<tr>
<td></td>
<td>Grade-2</td>
<td>Urine fills renal pelvis with or without major calyceal dilatation</td>
</tr>
<tr>
<td>Moderate</td>
<td>Grade-3</td>
<td>Grade-II+ uniform dilatation of minor calyces with preserved renal parenchyma</td>
</tr>
<tr>
<td>Severe</td>
<td>Grade-4</td>
<td>Grade-III+ parenchymal thinning</td>
</tr>
</tbody>
</table>

Discussion

Although dismembered pyeloplasty has become a well-accepted gold standard treatment modality for UPJ obstruction, the question of whether postoperative urinary diversion after pyeloplasty is beneficial has been debated for decades, particularly in infants and smaller children who have narrow ureters. There are many ways to divert urine, and different types of drainage methods have been described in the literature, including nephrostomy tube drainage, internal ureteral stents such as the double ‘J’ stent, external stent anastomosis, and a combination of these modalities [43-44]. In the original report of Anderson and Hynes, they clearly supported non-stented repair for UPJ obstruction and claimed that a nephrostomy tube or internal stent caused urinary tract infection, fibrosis at the suture line, and recurrent UPJ obstruction and hindered healing of the anastomosis site [45]. However, as operative techniques have evolved and postoperative complications such as urine leakage have been reported, the standard operative technique has evolved to include a urinary diversion modality such as a nephrostomy tube or internal ureteric stent to prevent urine leakage at the anastomosis site. Several favorable reports on the use of internal stents have been published in recent years showing their several advantages [46,47]. The advantages of a double ‘J’ stent compared with a nephrostomy tube include a shorter hospital stay and a lower morbidity rate [48, 49]. Furthermore, double ‘J’ stents prevent adhesion to the suture site by splitting the suture line, help to maintain an appropriate diameter and alignment of the ureter, and limit ureter kinking [50].

Woo and Farnsworth [51] used only internal ureteral stents rather than both a stent and a nephrostomy tube because the former showed a low rate of postoperative complications and a decreased postoperative hospital stay. Ninan et al. [46] reported a review of the records of 60 patients who underwent pyeloplasty in 2008. They strongly recommended double ‘J’ stenting, claiming that it was the safest mode of drainage in pediatric pyeloplasty. None of their 58 stented patients developed stricture of the anastomosis site, whereas 1 of the 3 patients who did not receive a stent developed stricture of the anastomosis site requiring redo pyeloplasty. The other two patients who had a ureteric stricture responded to balloon dilatation. In addition, they also reported a mean hospital stay of 2.6 days in the stented patients and that the majority of the patients could be safely discharged on the second postoperative day. On the other hand, the mean hospital stay of the nonstented patients was 7 days. The disadvantages of the double ‘J’ stent include that it can cause stent-related complications such as urinary tract infection and provoke obstruction of the ureter by irritating the mucosa of the ureter or the renal pelvis. Furthermore, leaving a double ‘J’ stent in neonates or pediatric patients requires additional general anesthesia for removal. In recent years, there has been a favorable tendency toward nonstented pyeloplasty [52, 53]. Braga et al. [53] evaluated influential factors associated with recurrent UPJ obstruction and concluded that stenting did not affect the long-term outcomes after pyeloplasty. This result was also found in the present study.
We found no significant difference between the nonstented group and the stented group in terms of improvement of hydronephrosis (Table 2). The overall numbers of recurrent UPJ obstruction in each group (2 of 22 vs. 2 of 54) were the same in the current study, and the recurrence rate of UPJ obstruction in the stented group (9%) was slightly higher than in the nonstented group (4%). Despite this, there was no significant difference in the recurrence rate between the groups (p=0.575) (Table 3).

Fortunately, no other complications associated with the operation, which may require additional procedures and a longer hospital stay, occurred in either group. Smith et al.68 compared the differences in complications or intervention rates in the stented (n=52) and nonstented (n=65) groups and reported that urinary tract infection occurred in 3 of 52 stented cases (6%) versus 1 of 65 nonstented cases (2%). Prolonged drainage or urinoma occurred only in nonstented cases (3% or 5% each). However, the overall rate of urological complications in each group was similar: 12% in the stented and 15% in the nonstented group. Therefore, the choice of postoperative urine drainage should be made by surgeon’s preference rather than by the perceived complication rate or the duration of hospital stay. Currently, the selection of the pyeloplasty approach in children with UPJ obstruction mostly depends on the surgeon’s preference and experience. Although several studies have been conducted in patients with UPJ obstruction, their sample sizes were small and the true effectiveness and advantages of LP over open pyeloplasty in children have not yet been clearly demonstrated.

Although it was suggested that early repair of UPJ obstruction could prevent irreversible renal damage and improve renal function,57 other studies failed to demonstrate that pyelocaliectasis was easier to resolve postoperatively in the infant kidney.58 It is more likely that patient ages at repair may have a minor role in the eventual resolution of hydronephrosis. However, the effect of patient ages at repair should be evaluated in further prospective studies with larger samples and long-term follow-up.

Numerous studies have investigated whether stents are needed during pediatric pyeloplasty, but the question remains unanswered and the decision remains controversial and largely surgeon dependent. Even among proponents of urinary diversion, the optimal method remains unclear.59, 60 However, the original report by Anderson and Hynes61 described a stentless procedure; currently, one can find reports supporting no stents,62-65, externalized stents (percutaneous catheter)66-68, and internalized (JJ) stents69-71. Th is plethora of studies proves all methods to be safe and effective, but conflicting summaries of the results have not proved any single method as superior.72, 73

The supposed advantages of stenting are maintaining alignment of the anastomosis, decreasing urinary extravasation, bypassing the transient obstruction due to edema at the anastomosis site, preventing subsequent stenosis, and enabling documenting the flow of contrast through a nephrostomy tube59-62. However, stents may cause infection, stricture due to pressure of a stent over the anastomosis, injury to the anastomosis or renal tissue, bleeding, dislodgement, fragmentation or migration, calculus formation, and may cause infection, stricture due to pressure of a stent over the anastomosis, injury to the anastomosis or renal tissue, bleeding, dislodgement, which were all treated by stent removal with urinary leakage through the Penrose drain in the stented and nonstented groups. The rate of PUL was 14% in Liss et al.77 study; all but two were managed expectantly. We had one (7.1%) stent slippage, which passed without complications or further morbidity. Castagnetti et al.80 had 5% rate of stent dislodgement, which were all treated by stent removal with exceptional need for additional procedures.

Smith et al.72 found also that there is no significant difference between the complications of the stented and nonstented repairs; of the 52 stented repairs, complications developed in seven (13%), of which six (12%) were potentially related to stenting. Of the 65 nonstented repairs, complications developed in 11 (17%), of which 10 (15%) were related potentially to lack of stenting.72, Bayne et al.74 also found no significant difference in the complication rate between the stented and nonstented
patients. Elmalik et al. analyzed the nature of complications and concluded that complications related to surgical repair were significantly higher in the unplaced group, whereas stented patients suffered only stent-related complications, namely UTI and stent migration. The success rate of open A-H distempered pyeloplasty varies from 94 to 100% in different series [60, 62, 65, 66, 67].

The outcome of repair regarding improvement of hydrenephrosis and DRF was comparable in both groups. Th ere was significant improvement in both parameters as detected by postoperative US and DTPA, with no significant difference between both groups. Th is is consistent with many other reports comparing the two techniques of pyeloplasty [62, 69].

Some surgeons followed the patients only with US and performed an isotope scan only if US showed worsening hydrenephrosis or if patients develop symptoms of obstruction [63, 72, 83]. Th e improvement in hydrenephrosis observed in US was noted from 3 months postoperatively. Earlier improvement of hydrenephrosis in stented than in nonstented patients was described [69, 80]. Some authors denied early improvement in hydrenephrosis after pyeloplasty and described improvement from 6 months to 1 year [81, 83, 86].

Despite the comparable results of both techniques in our study and in many other studies, the rate and nature of surgery-related complications in the nonstented group as well as the rate of redo procedures, make a splinted technique preferable in the high-risk group-for example, single kidney patients, revision pyeloplasty, poor overall renal function, and renal stones [62, 72, 82].

Conclusions

In the comparison of the non-stented group and the stented group during dismembered pyeloplasty in children with UPJ obstruction, we found no significant differences in the resolution of hydrenephrosis or overall postoperative complications. Therefore, the insertion of an internal ureteral stent during pyeloplasty is not necessary and the choice of an internal ureteral stent for postoperative drainage should be made by surgeon’s experience and preference.

The use of stents in pyeloplasty in children is not justified as a routine. Th e success rate does not depend on whether or not to stent or on the type of stent used. Although the rate of complications is comparable in both groups, the nature of complications is different. Whether or not to stent a pyeloplasty in children relies mainly on surgeon preference and local and institutional circumstances. Stenting may be preferable in high-risk patients. However, the number of patients in the study is small and a larger number is needed to strengthen these conclusions.

The use of stents in pyeloplasty in children is not justified as a routine. The success rate does not depend on whether or not to stent or on the type of stent used. Although the rate of complications is comparable in both groups, the nature of complications is different. Whether or not to stent a pyeloplasty in children relies mainly on surgeon preference and local and institutional circumstances. Stenting may be preferable in high-risk patients. However, the number of patients in the study is small and a larger number is needed to strengthen these conclusions.

References

17. Oh SJ, Moon DH, Kang W, Park YS, Park T, Kim KS. Supranormal differential renal function is real but may be pathological: assessment by 99m technetium

89. Lee YS, Lee CN, Kim MU, Jang WS, Lee H, Im YJ, Han SW. The risk factors and clinical significance of acute postoperative complications after unstented pediatric
